

CERTIFICATION

AOAC Research Institute Performance Tested MethodsSM

Certificate No.

031002

The AOAC Research Institute hereby certifies the method known as:

BAX® System Real-Time PCR Assay for E. coli O157:H7

manufactured by

Hygiena 2 Boulden Circle New Castle, DE 19720 USA

This method has been evaluated and certified according to the policies and procedures of the AOAC *Performance Tested Methods*SM Program. This certificate indicates an AOAC Research Institute Certification Mark License Agreement has been executed which authorizes the manufacturer to display the AOAC Research Institute *Performance Tested Methods* SM certification mark on the above-mentioned method for the period below. Renewal may be granted by the Expiration Date under the rules stated in the licensing agreement.

Bradley A. Stawick, Senior Director Signature for AOAC Research Institute

Issue Date
Expiration Date

December 10, 2024 December 31, 2025 **AUTHORS**

ORIGINAL VALIDATION: Frank Burns, Lois Fleck, Bridget Andaloro, Eugene Davis, Jeff Rohrbeck, George Tice, and

Morgan Wallace

MODIFICATION JULY 2013: Steve Hoelzer, F. Morgan Wallace, Lois Fleck, Deana DiCosimo, Jacqueline Harris, Bridget Andaloro,

Andrew Farnum, Eugene Davis, and Jeff Rohrbeck

SUBMITTING COMPANY

DuPont ESL Building 400

Route 141 & Henry Clay Road Wilmington, DE 19880-0400

CURRENT SPONSOR

Hygiena 2 Boulden Circle New Castle, DE 19720

METHOD NAME

BAX® System Real-Time PCR Assay for E. coli O157:H7

CATALOG NUMBERS

BAX® Assay KIT2000, MED2003 (MP Media)

INDEPENDENT LABORATORY

Food Safety Net Laboratory Services USA

APPLICABILITY OF METHOD

Target organism - E. coli O157:H7.

Matrixes - Ground beef (65 g), beef trim (375 g), spinach (25 g), and lettuce (25 g)

Performance claims - Equivalent or better performance than the appropriate reference method

REFERENCE METHOD

Microbiology Laboratory Guidebook (January 28, 2008) MLG 5.04, USDA Food Safety and Inspection Service, Office of Public Health and Science (2)

ORIGINAL CERTIFICATION DATE

March 09, 2010

METHOD MODIFICATION RECORD

- 1. July 2013
- March 2017 Level 1
- January 2018 Level 1 3.
- May 2019 Level 1 4.
- December 2019 Level 1 5.
- 6. December 2021 Level 1
- 7. December 2023 Level 1 December 2024 Level 1

CERTIFICATION RENEWAL RECORD

Renewed through December 2025.

- SUMMARY OF MODIFICATION
 - Addition of Thermal Block for automated sample lysis.
 - Name change from DuPont Nutrition & Health to Qualicon Diagnostics LLC., a Hygiena company.
 - Editorial update inserts, manuals, labels to Hygiena.
 - 4. Editorial updates to inserts and corporate address update.
 - 5. Editorial changes.
 - 6. Editorial changes.
 - 7. Editorial changes.
 - Editorial changes.

Under this AOAC Performance Tested MethodsSM License Number, 031002 this method is distributed by:

NONE

Under this AOAC Performance Tested MethodsSM License Number, 031002 this method is distributed as:

PRINCIPLE OF THE METHOD (1)

PCR Amplification - The BAX® System Real-Time E. coli O157:H7 Assay uses the Polymerase Chain Reaction (PCR) to amplify specific fragments of bacterial DNA, which are stable and unaffected by growth environment. The fragments are genetic sequences that are unique to the E. coli O157:H7 serotype, thus providing a highly reliable indicator that the organism is present. The BAX System simplifies the PCR process by combining the requisite primers, polymerase and nucleotides into a stable, dry, manufactured tablet already packaged inside the PCR tubes. After amplification, these tubes remain sealed for the detection phase, significantly reducing the potential for contamination with one or more molecules of amplified PCR product.

NONE

Fluorescent real time detection - This automated BAX® System method uses fluorescent detection to analyze PCR product. One PCR primer for each target (two E. coli O157:H7 specific targets and an internal control) contains a fluorescent dye (three different dyes, one for each target) as a constituent of the primer as well as a quencher (the uni-molecular combination of a primer, fluorescent dye and quencher constitute a Scorpion™ Probe). When incorporated into a PCR product, the dye and quencher are spatially separated, which causes an increase in emission signal. The BAX System measures the magnitude and characteristics of fluorescent signal change. An analysis by the BAX® System software algorithm then evaluates that data to determine a positive or negative result which is displayed as described below.

DISCUSSION OF THE VALIDATION STUDY (1)

Multiple replicates of the beef trim protocol were performed since this is the most heavily tested matrix for E. coli O157:H7 in the U.S. In addition, many corporate customers, as well as governments outside the U.S. are requesting data from samples comprising >50 positive samples at a spike level in the 1-2 cfu per analytical portion range. The use of data from multiple strains for validation on beef trim has also been requested. Across all matrixes the BAX® System demonstrated equivalent or statistically better performance compared to the corresponding appropriate reference method. Since this study was completed, the FDA BAM method for the detection of EHEC has been substantively altered. Additional studies are planned to address the performance of the BAX method relative to the revised reference method and if necessary, changes will be made using the PTM method modification process. Additionally, the USDA-FSIS is considering new validation guidelines for 375g trim testing, but since these guidelines are not available yet, and since the protocol for these studies was approved in April, these differences will be addressed through the AOAC-RI method modification process when the new USDA requirements are available.

Table 10. T	est Assay Inclusivity	(1)					
Strain	Source	Strain	Assay Result	Strain	Source	Strain	Assay Result
12836	PSU ReferenceLab	E. coli O157 :H7	POS	12848	PSU Reference Lab	E. coli O157 :H7	POS
12830	PSU ReferenceLab	E. coli O157 :H7	POS	12859	PSU Reference Lab	E. coli O157 :H7	POS
12832	PSU Reference Lab	E. coli O157 :H7	POS	12860	PSU Reference Lab	E. coli O157 :H7	POS
12833	PSU Reference Lab	E. coli O157 :H7	POS	12861	PSU Reference Lab	E. coli O157 :H7	POS
12844	PSU Reference Lab	E. coli O157 :H7	POS	12862	PSU Reference Lab	E. coli O157 :H7	POS
12845	PSU Reference Lab	E. coli O157 :H7	POS	12863	PSU Reference Lab	E. coli O157 :H7	POS
12846	PSU Reference Lab	E. coli O157 :H7	POS	12874	PSU Reference Lab	E. coli O157 :H7	POS
12835	PSU Reference Lab	E. coli O157 :H7	POS	12875	PSU Reference Lab	E. coli O157 :H7	POS
12834	PSU Reference Lab	E. coli O157 :H7	POS	12876	PSU Reference Lab	E. coli O157 :H7	POS
12839	PSU Reference Lab	E. coli O157 :H7	POS	12857	PSU Reference Lab	E. coli O157 :H7	POS
12840	PSU Reference Lab	E. coli O157 :H7	POS	12858	PSU Reference Lab	E. coli O157 :H7	POS
12841	PSU Reference Lab	E. coli O157 :H7	POS	12869	PSU Reference Lab	E. coli O157 :H7	POS
12842	PSU Reference Lab	E. coli O157 :H7	POS	12870	PSU Reference Lab	E. coli O157 :H7	POS
12843	PSU Reference Lab	E. coli O157 :H7	POS	12871	PSU Reference Lab	E. coli O157 :H7	POS
12854	PSU Reference Lab	E. coli O157 :H7	POS	12873	PSU Reference Lab	E. coli O157 :H7	POS
12855	PSU Reference Lab	E. coli O157 :H7	POS	12884	PSU Reference Lab	E. coli O157 :H7	POS
12856	PSU Reference Lab	E. coli O157 :H7	POS	12885	PSU Reference Lab	E. coli O157 :H7	POS
12837	PSU Reference Lab	E. coli O157 :H7	POS	12887	PSU Reference Lab	E. coli O157 :H7	POS
12849	PSU Reference Lab	E. coli O157 :H7	POS	12867	PSU Reference Lab	E. coli O157 :H7	POS
12850	PSU Reference Lab	E. coli O157 :H7	POS	12868	PSU Reference Lab	E. coli O157 :H7	POS
12851	PSU Reference Lab	E. coli O157 :H7	POS	12879	PSU Reference Lab	E. coli O157 :H7	POS
12852	PSU Reference Lab	E. coli O157 :H7	POS	12880	PSU Reference Lab	E. coli O157 :H7	POS
12853	PSU Reference Lab	E. coli O157 :H7	POS	12881	PSU Reference Lab	E. coli O157 :H7	POS
12864	PSU Reference Lab	E. coli O157 :H7	POS	12882	PSU Reference Lab	E. coli O157 :H7	POS
12865	PSU Reference Lab	E. coli O157 :H7	POS	12883	PSU Reference Lab	E. coli O157 :H7	POS
12847	PSU Reference Lab	E. coli O157 :H7	POS	12810	PSU Reference Lab	E. coli O157 :H7	POS
12813	PSU Reference Lab	E. coli O157 :H7	POS	12816	PSU Reference Lab	E. coli O157 :H7	POS
2485	Unknown	E. coli O157:HNM	POS	8301	Unknown	E. coli O157 :HNM	POS
5893	Unknown	E. coli O157 :HNM	POS	8302	Unknown	E. coli O157 :HNM	POS
5894	Unknown	E. coli O157 :HNM	POS	TD8136	Bovine	E. coli O157 :H7 Cluster A	POS
MA06	Peter Feng, FDA	E. coli O157:H7 rough	POS				

Table 11. Te	est Assay Exclus	sivity (1)					
Strain #	Source	Strain	Result	Strain #	Source	Strain	Result
DD1081	Unknown	Shigella boydii	NEG	DD2434	Unknown	E. coli O1:H7	NEG
DD11348	Unknown	Enterobacter sakazakii	NEG	DD2443	Unknown	E. coli O157 :H19	NEG
DD1152	Pate'	Listeria monocytogenes	NEG	DD2491	Unknown	E. coli O2:H7	NEG
DD1261	Duck	Salmonella newport	NEG	DD2520	Unknown	E. coli O113:H7	NEG
DD13249	raw shrimp	Vibrio parahemolyticus	NEG	DD2614	Human feces	Edwardsiella tarda	NEG
DD1716	Unknown	E. coli O158:H23	NEG	DD2901	Cream cake	Bacillus cereus	NEG
DD1718	Unknown	E. coli O128:H2	NEG	DD2992	Unknown	Salmonella enterica serovar Lille	NEG
DD1719	Unknown	E. coli O28:HNM	NEG	DD3017	Unknown	Salmonella dublin	NEG
DD1720	Unknown	E. coli O26:HNM	NEG	DD3019	Unknnown	Salmonella dublin	NEG
DD1721	Unknown	E. coli O114:H32	NEG	DD3064	Environmental swab	Morganella morganii	NEG
DD1722	Unknown	E. coli O127: HNM	NEG	DD3981	urine	Enterococcus faecalis	NEG
DD1723	Unknown	E. coli O119:H27	NEG	DD3982	Blood culture	Pseudomonas aeruginosa	NEG
DD1724	Unknown	E. coli O18:H14	NEG	DD3998	Bovine mastitis	Streptococcus equi	NEG
DD1725	Unknown	E. coli 0125:H19	NEG	DD4160	Howler monkey	Staphylococcus aureus	NEG
DD1777	Unknown	Salmonella enterica	NEG	DD5588	Ground beef	Hafnia alvei	NEG
DD1810	Unknown	E. coliO28:H16	NEG	DD577	Human	Pseudomonas stutzeri	NEG
DD1811	Unknown	E. coli O127:H40	NEG	DD5883	Unknown	E. coli 055 :H10	NEG
DD1812	Unknown	E. coli O127:H10	NEG	DD610	ham	Staphylococcus aureus	NEG
DD1814	Unknown	E. coli O6:H-	NEG	DD6121	Gull, cloacal swab	Proteus mirabilis	NEG
DD1817	Unknown	E. coli O29:H-	NEG	DD649	sheep	Listeria ivanovii	NEG
DD1818	Unknown	E. coli O136:H8	NEG	DD6523	Ground beef	Klebsiella oxytoca	NEG
DD1819	Unknown	E. coli O18:HNM	NEG	DD655	Calf Intestine	E. coli O101:K-:K99	NEG
DD1820	Unknown	E. coli 086:H8	NEG	DD661	pre-filter tanks	Pseudomonas fluorescens	NEG
DD1821	Unknown	E. coli O55:H-	NEG	DD6719	Sesame seeds	Escherichia hermanii	NEG
DD1822	Unknown	E. coli O28:H8,4,3	NEG	DD6832	Unknown	Shigella sonnei	NEG
DD1824	Unknown	E. coli O125:HNM	NEG	DD687	vacuum packed lamb	Lactobacillus carnis	NEG

DD1825	Unknown	E. coli O25:H8	NEG	DD7005	Unknown	Salmonella enterica serovar Dublin	NEG
DD1827	Unknown	E. coli O20:HNM	NEG	DD7344	Human	Lactobacillus acidophilus	NEG
DD1831	Unknown	E. coliO26:H11	NEG	DD846	Cockroach	Escherichia blattae	NEG
DD1833	Unknown	E. coliO55:H9	NEG	DD847	Human feces	Escherichia ferguson	NEG
DD1834	Unknown	E. coliO29:H51	NEG	DD849	Unknown	Escherichia intermedia	NEG
DD1835	Unknown	E. coli 0127:H-	NEG	DD850	Human wound	Escherichia vulnaris	NEG
DD1908	Unknown	E. coli O25:H7	NEG	DD922	cured ham	Listeria innocua	NEG
DD2166	Unknown	Salmonella abaetetuba	NEG	TD2631	Unknown	Vibrio fluvialis	NEG
DD2274	Unknown	Salmonella enterica serovar Anatum	NEG	TD3122	Unknown	Vibrio vulnificus	NEG
DD2341	Unknown	Salmonella enterica serovar Mbandaka	NEG	TD3136	Unknown	Vibrio cholera	NEG

Table 2. Res	ults of 65g	Ground B	eef Internal Stud	dy (1)							
Method	MPN Per 65g ^a	Spike Level ^a	Enrichment Method (Media)	Total spiked	Presump.Pos /Confirmed	Sensitivity ^b %	False Neg ^c %	Presump. Pos /Unspiked	Specificity ^d %	False Pos ^e %	Chi- square ^f
9 hr BAX	0.59	0.70	BAX MP	20	5/5	100	0	0/5	100	0	0
24 hr BAX	0.59	0.70	BAX MP	20	5/5	100	0	0/5	100	0	0
Reference (22 hr)	0.59	0.70	mTSB + n	20	5/4	100	0	0/5	80	20	

^a Most probable number of colony forming units per test portion. **MPN was performed on the day of testing using the reference method.**MPN values were calculated using the tables found in the FDA-BAM. Spike level was determined by performing a standard plate count on the incident cultures which were diluted for spiking each matrix on the day of introduction to the master sample.

^{*}Chi-square value > 3.84 indicates significance at P < 0.05.

Table 3. Res	Table 3. Results of 65g Ground Beef Independent Laboratory Study (1)													
Method	MPN Per 65g ^a	Enrichment Method (Media)	Total spiked	Presump.Pos /Confirmed	Sensitivity ^b %	False Neg ^c %	Presump. Pos /Unspiked	Specificity ^d %	False Pos ^e %	Chi- square ^f				
9 hr BAX	1.0	BAX MP	20	11/12	92	8	0/5	100	0	0.94				
24 hr BAX	1.0	BAX MP	20	12/12	100	0	0/5	100	0	0.42				
Reference (22 hr)	1.0	mTSB + n	20	14/14	100	0	0/5	100	0	-				

^a Most probable number of colony forming units per test portion. **MPN was performed on the day of testing using the reference method.** MPN values were calculated using the tables found in the FDA-BAM. .

^b Sensitivity rate: 100 times the number of true presumptive positive results divided by total true positive results confirmed from enrichment of spiked samples.

^c False negative rate: 100 minus sensitivity rate.

^d Specificity rate: 100 times the number of assay-negative results divided by total number of true negative results, including unspiked samples.

^e False positive rate: 100 minus specificity rate

f Mantel Haenszel Chi-square for unpaired samples..

^b Sensitivity rate: 100 times the number of true presumptive positive results divided by total true positive results confirmed from enrichment of spiked samples.

 $^{^{\}rm c}$ False negative rate: 100 minus sensitivity rate.

^d Specificity rate: 100 times the number of assay-negative results divided by total number of true negative results, including unspiked samples. Specificity is determined by the USDA presumptive result compared with the actual culture confirmation.

 $^{^{\}it e}$ False positive rate: 100 minus specificity rate

^f Mantel Haenszel Chi-square for unpaired samples.

Table 4. Res	ults of 375	g Beef Trir	m Replicate 1 St	rain DD12	850 (1)						
Method	MPN Per 25g ^a	Spike Level ^a	Enrichment Method (Media)	Total spiked	Presump.Pos /Confirmed	Sensitivity ^b %	False Neg ^c %	Presump. Pos /Unspiked	Specificity ^d %	False Pos ^e %	Chi- square ^f
10 hr BAX	0.16	1.0	BAX MP	20	10/10	100	0	0/5	100	0	5.4
24 hr BAX	0.16	1.0	BAX MP	20	10/10	100	0	0/5	100	0	5.4
Reference (22 hr)	0.16	1.0	mTSB + n	20	3/3	100	0	0/5	80	20	

^a Most probable number of colony forming units per test portion. **MPN was performed on the day of testing using the reference method.** MPN values were calculated using the tables found in the FDA-BAM. Spike level was determined by performing a standard plate count on the incident cultures which were diluted for spiking each matrix on the day of introduction to the master sample.

^{*}Chi-square value > 3.84 indicates significance at P < 0.05.

Table 5. Res	ults of 375	g Beef Trii	m Replicate 2 St	rain DD64	2 (1)						
Method	MPN Per 25g ^a	Spike Level ^a	Enrichment Method (Media)	Total spiked	Presump.Pos /Confirmed	Sensitivity ^b %	False Neg ^c %	Presump. Pos /Unspiked	Specificity ^d %	False Pos ^e %	Chi- square ^t
10 hr BAX	0.28	0.65	BAX MP	20	11/11	100	0	0/5	100	0	5.1
24 hr BAX	0.28	0.65	BAX MP	20	11/11	100	0	0/5	100	0	5.1
Reference (22 hr)	0.28	0.65	mTSB + n	20	5/4	100	0	0/5	80	20	

^a Most probable number of colony forming units per test portion. **MPN was performed on the day of testing using the reference method.**MPN values were calculated using the tables found in the FDA-BAM. Spike level was determined by performing a standard plate count on the incident cultures which were diluted for spiking each matrix on the day of introduction to the master sample.

^{*}Chi-square value > 3.84 indicates significance at P < 0.05

Table 6. Res	ults of 375	g Beef Tri	m Replicate 3 S	train DD19	79 (1)						
Method	MPN Per 25g ^a	Spike Level ^a	Enrichment Method (Media)	Total spiked	Presump.Pos /Confirmed	Sensitivity ^b %	False Neg ^c %	Presump. Pos /Unspiked	Specificity ^d %	False Pos ^e %	Chi- square ^f
10 hr BAX	2.1	2.0	BAX MP	20	18/18	100	0	0/5	100	0	0.22
24 hr BAX	2.1	2.0	BAX MP	20	18/18	100	0	0/5	100	0	0.22
Reference (22 hr)	2.1	2.0	mTSB + n	20	17/17	100	0	0/5	100	100	

^a Most probable number of colony forming units per test portion. MPN was performed on the day of testing using the reference method. MPN values were calculated using the tables found in the FDA-BAM. Spike level was determined by performing a standard plate count on the incident cultures which were diluted for spiking each matrix on the day of introduction to the master sample.

^b Sensitivity rate: 100 times the number of true presumptive positive results divided by total true positive results confirmed from enrichment of spiked samples.

^c False negative rate: 100 minus sensitivity rate.

^d Specificity rate: 100 times the number of assay-negative results divided by total number of true negative results, including unspiked samples. Specificity is determined by the USDA presumptive result compared with the actual culture confirmation.

^e False positive rate: 100 minus specificity rate

f Mantel Haenszel Chi-square for unpaired samples..

^b Sensitivity rate: 100 times the number of true presumptive positive results divided by total true positive results confirmed from enrichment of spiked samples.

^c False negative rate: 100 minus sensitivity rate.

^d Specificity rate: 100 times the number of assay-negative results divided by total number of true negative results, including unspiked samples. Specificity is determined by the USDA presumptive result compared with the actual culture confirmation.

^e False positive rate: 100 minus specificity rate

^f Mantel Haenszel Chi-square for unpaired samples.

^b Sensitivity rate: 100 times the number of true presumptive positive results divided by total true positive results confirmed from enrichment of spiked samples.

^c False negative rate: 100 minus sensitivity rate.

^d Specificity rate: 100 times the number of assay-negative results divided by total number of true negative results, including unspiked samples. Specificity is determined by the USDA presumptive result compared with the actual culture confirmation.

^e False positive rate: 100 minus specificity rate

f Mantel Haenszel Chi-square for unpaired samples.

^{*}Chi-square value > 3.84 indicates significance at P < 0.05.

Table 7. Res	ults of 375	g Beef Tri	m Replicate 4 St	train DD12	835 (1)						
Method	MPN Per 25g ^a	Spike Level ^a	Enrichment Method (Media)	Total spiked	Presump.Pos /Confirmed	Sensitivity ^b %	False Neg ^c %	Presump. Pos /Unspiked	Specificity ^d %	False Pos ^e %	Chi- square ^f
10 hr BAX	1.8	1.9	BAX MP	20	17/17	100	0	0/5	100	0	0
24 hr BAX	1.8	1.9	BAX MP	20	17/17	100	0	0/5	100	0	0
Reference (22 hr)	1.8	1.9	mTSB + n	20	17/17	100	0	0/5	100	100	

^a Most probable number of colony forming units per test portion. **MPN was performed on the day of testing using the reference method.** MPN values were calculated using the tables found in the FDA-BAM. Spike level was determined by performing a standard plate count on the incident cultures which were diluted for spiking each matrix on the day of introduction to the master sample.

^{*}Chi-square value > 3.84 indicates significance at P < 0.05.

Table 8. Res	ults of 25g	Lettuce S	train DD12835 ((1)							
Method	MPN Per 25g ^a	Spike Level ^a	Enrichment Method (Media)	Total spiked	Presump.Pos /Confirmed	Sensitivity ^b %	False Neg ^c %	Presump. Pos /Unspiked	Specificity ^d %	False Pos ^e %	Chi- square ^f
8 hr BAX	1.1	1.0	BAX MP	20	15/16	94	6	0/5	100	0	6.3
10 hr BAX	1.1	1.0	BAX MP	20	15/16	94	6	0/5	100	0	6.3
24 hr BAX	1.1	1.0	BAX MP	20	16/16	100	0	0/5	100	0	8.1
Reference (24 hr)	1.1	1.0	EEB	20	7	NA	NA	0/5	NA	NA	-

^a Most probable number of colony forming units per test portion. **MPN was performed on the day of testing using the reference method.** MPN values were calculated using the tables found in the FDA-BAM. Spike level was determined by performing a standard plate count on the incident cultures which were diluted for spiking each matrix on the day of introduction to the master sample.

^{*}Chi-square value > 3.84 indicates significance at P < 0.05.

Table 9. Res	ults of 25g	Lettuce S	train DD1450 (1)							
Method	MPN Per 25g ^a	Spike Level ^a	Enrichment Method (Media)	Total spiked	Presump.Pos /Confirmed	Sensitivity ^b %	False Neg ^c %	Presump. Pos /Unspiked	Specificity ^d %	False Pos ^e %	Chi- square ^f
8 hr BAX	0.23	1.0	BAX MP	20	12/13	92	8	0/5	100	0	3.6
10 hr BAX	0.23	1.0	BAX MP	20	13/13	100	0	0/5	100	0	4.8
24 hr BAX	0.23	1.0	BAX MP	20	13/13	100	0	0/5	100	0	4.8
Reference (24 hr)	0.23	1.0	EEB	20	6	NA	NA	0/5	NA	NA	

^a Most probable number of colony forming units per test portion. **MPN was performed on the day of testing using the reference method.** MPN values were calculated using the tables found in the FDA-BAM. Spike level was determined by performing a standard plate count on the incident cultures which were diluted for spiking each matrix on the day of introduction to the master sample.

^b Sensitivity rate: 100 times the number of true presumptive positive results divided by total true positive results confirmed from enrichment of spiked samples.

^c False negative rate: 100 minus sensitivity rate.

^d Specificity rate: 100 times the number of assay-negative results divided by total number of true negative results, including unspiked samples. Specificity is determined by the USDA presumptive result compared with the actual culture confirmation.

^e False positive rate: 100 minus specificity rate

^f Mantel Haenszel Chi-square for unpaired samples.

^b Sensitivity rate: 100 times the number of true presumptive positive results divided by total true positive results confirmed from enrichment of spiked samples.

^c False negative rate: 100 minus sensitivity rate.

^a Specificity rate: 100 times the number of assay-negative results divided by total number of true negative results, including unspiked samples.

e False positive rate: 100 minus specificity rate

f Mantel Haenszel Chi-square for unpaired samples.

^b Sensitivity rate: 100 times the number of true presumptive positive results divided by total true positive results confirmed from enrichment of spiked samples.

^c False negative rate: 100 minus sensitivity rate.

d Specificity rate: 100 times the number of assay-negative results divided by total number of true negative results, including unspiked samples.

^e False positive rate: 100 minus specificity rate

f Chi-square: McNemar formula (|a-b|-1)²/(a+b), where a = results that were positive by BAX and negative by reference method, and b= results that were negative by BAX and positive by reference method used for paired samples, Mantel Haenszel for unpaired samples.

^{*}Chi-square value > 3.84 indicates significance at P < 0.05.

DISCUSSION OF MODIFICATION APPROVED JULY 2013 (4)

The results of the method comparison between the digital DuPont Thermal Block and the analog heating/cooling blocks are provided in Table 3 below. For all sample types and BAX System assays evaluated, the results for samples processed with the DuPont Thermal Block and the original heating/cooling blocks demonstrated no significant statistical difference as indicated by POD analysis (the 95% confidence interval of the dPOD included 0 in all cases). For additional figures illustrating the target responses of the individual BAX System assays, see Appendix B.

All 544 samples inoculated with high levels of the target organism returned positive results with the BAX System using both sample preparation methods, and all 544 samples tested as unspiked negative controls returned negative results with the BAX System using both sample preparation methods with the exception of the non-inoculated poultry rinse samples that gave positive results for Campylobacer jejuni, while giving negative results for the target C. coli that was spiked into the test samples. For samples inoculated with low levels of target organism, the two preparation methods returned identical results for 530 of the 544 samples tested. The results for the 14 samples that returned different results between the two methods are summarized in Table 3. Because the low-spike samples were tested at levels near the limit of detection for the BAX® System assays, some discrepancy between the two methods is expected based on factors such as the distribution of the target organism within the sample.

Analysis of target response in cases where a fractional response was not generated, while demonstrating significant differences from a statistical standpoint in some cases, were not indicative of any difference that would likely be significant in a practical sense. All average differences were less than 10% for melt curve based target peak height, or target peak area to target plus internal control peak areas (for the Yeast and Mold assay) and all average Ct differences were less than 1 for all real time assay.

Because the difference in results between the two methods demonstrated no significant statistical difference as indicated by the POD analysis, these differences are found to be acceptable in this study for demonstrating equivalency between the two methods.

Table 3. BAX Syst	tem Results	– DuPont T	hermal Block	vs. Ar	nalog Heating	/Cooling Blocks	(4)				
BAX System	Sample	Spike	Test		Heating/Coo	ling Blocks		DuPont The	ermal Block	$dPOD_{TB}^d$	95% CI ^e
Assay	Type	Level	Portions	Xa	POD _{2B} b	95% CI ^e	Xa	POD _{TB} ^c	95% CI ^e		
Real-time E.	Ground	Low	17	17	1	0.82, 1.0	16	0.94	0.73, 0.99	0.059	-0.13, 0.27
coli O157:H7	beef	Control	17	0	0	0, 0.19	0	0	0, 0.19	0	-0.19, 0.19
	- 6	High	17	17	1	0.82, 1.0	17	1	0.82, 1.0	0	-0.18, 0.18
	Beef trim	Low	17	17	1	0.82, 1.0	17	1	0.82, 1.0	0	-0.18, 0.18
		Control	17	0	0	0, 0.19	0	0	0, 0.19	0	-0.19, 0.19
		High	17	17	1	0.82, 1.0	17	1	0.82, 1.0	0	-0.18, 0.18
	Spinach	Low	17	17	1	0.82, 1.0	17	1	0.82, 1.0	0	-0.18, 0.18
		Control	17	0	0	0, 0.19	0	0	0, 0.19	0	-0.19, 0.19
		High	17	17	1	0.82, 1.0	17	1	0.82, 1.0	0	-0.18, 0.18

REFERENCES CITED

- Burns, Frank, Fleck, Lois, Andaloro, Bridget, Davis, Eugene, Rohrbeck, Jeff, Tice, George, and Wallace, Morgan., Evaluation of the DuPont™ Bax® System PCR
 Assay for Escherichia coli O157:H7, AOAC Performance Tested Methods™ certification number 031002.
- 2. *Microbiology Laboratory Guidebook* (January 28, 2008) MLG 5.04, USDA Food Safety and Inspection Service, Office of Public Health and Science (Accessed December 18, 2009), http://www.fsis.usda.gov/PDF/MLG 5 04.pdf
- 3. DuPont Nutrition & Health, Evaluation of DuPont[™] BAX® System Method for Detecting *Escherichia coli* O157:H7 in Composite 375g Samples of Raw Ground Beef, AOAC® *Performance Tested*™ certification number 031002. Approved 2008
- Hoelzer, S., Wallace, F.M., Fleck, L, DiCosimo, D., Harris, J., Andaloro, B., Farnum, A., Davis, E., and Rohrbeck, J., Evaluation of the DuPont[™] Thermal Block for Automated Sample Lysis with the BAX® System Method (Minor Modification), AOAC Performance TestedSM certification number 031002. Approved July 2013.